Surfaces: Interactions of Proteins with Surfaces

Importance of Protein-Surface Interactions

- Modulate cell adhesion
- Trigger the biological cascade resulting in foreign body response
- Central to diagnostic array/sensor device design & performance
- Initiate other bioadhesion: e.g., marine fouling, bacterial adhesion

Fundamentals on Proteins

- Largest organic component of cells (~18 wt% /H₂O =70%); extracellular matrix, and plasma (7wt% /H₂O=90%).
- Many thousands exist—each encoded from a gene in DNA.
- Involved in all work of cells: ex, adhesion, migration, secretion, differentiation, proliferation and apoptosis (death).
- May be soluble or insoluble in body fluids.

Insoluble proteins—structural & motility functions; can also mediate cell function (ex., via adhesion peptides)

Soluble proteins—strongly control cell function via binding, adsorption, etc.

• Occur in wide range of molecular weights.

```
"Peptides" (several amino acids): hormones, pharmacological reagents
```

e.g., oxytocin: stimulates uterine contractions (9 a.a.) aspartame: NutraSweet (2 a.a.)

"Polypeptides" (~10-100 amino acids): hormones, growth factors

e.g., insulin: 2 polypeptide chains (30 & 21 a.a.) epidermal growth factor (45 a.a.)

"Proteins" 100's-1000's of amino acids

e.g., serum albumin (550 a.a.) apolipoprotein B: cholesterol transport agent (4536 a.a.)

Protein Functions

- Structural/scaffold: components of the extracellular matrix (ECM) that physically supports cells
- e.g., collagen—fibrillar, imparts strength;
 elastin—elasticity to ligaments;
 adhesion proteins: fibronectin, laminin, vitronectin—glycoproteins
 that mediate cell attachment (bonded to GAGs)
 - *Enzymes*: catalyze rxns by lowering E_a thru stabilized transition state, via release of binding energy
- e.g., *urease*—catalyzes hydrolysis of urea

Protein Functions (cont.)

- *Transport*: bind and deliver specific molecules to organs or across cell membrane
- e.g., hemoglobin carries bound O₂ to tissues; serum albumin transports fatty acids
 - Motile: provide mechanism for cell motion e.g., via (de)polymerization & contraction
- e.g., actin, myosin in muscle

Protein Functions (cont.)

- *Defense:* proteins integral to the immune response and coagulation mechanism
- e.g., *immunoglobulins* (antibodies)—Y-shaped proteins that bind to antigens (foreign proteins) inducing aggregate formation

fibrinogen & thrombin—induce clots by platelet receptor binding

- Regulatory: cytokines—regulate cell activities
- e.g., hormones: insulin (regulates sugar metabolism); growth factors

Proteins have multiple structural levels.

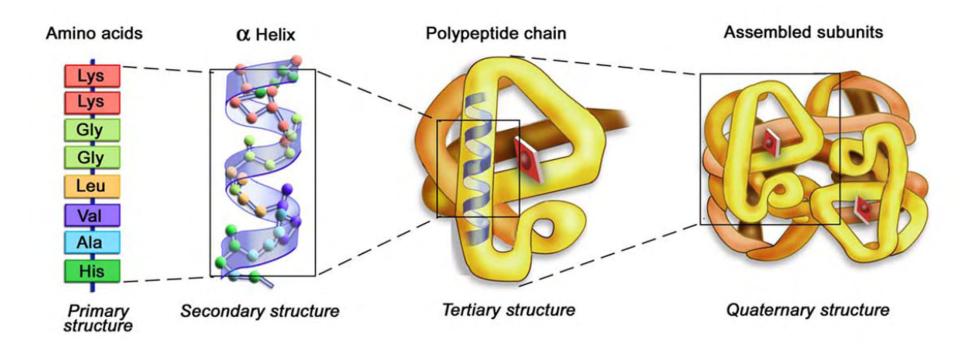
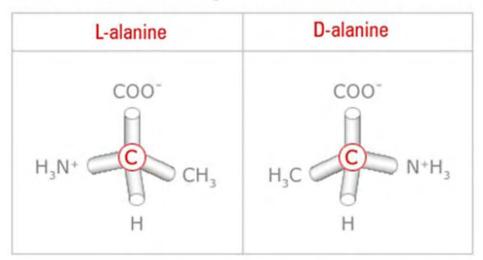
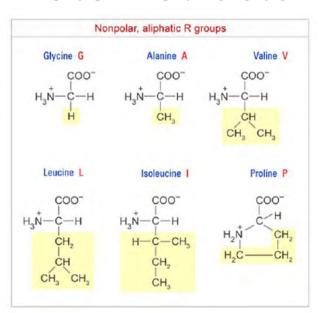
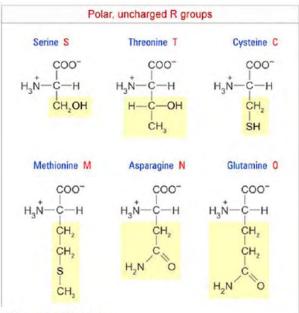


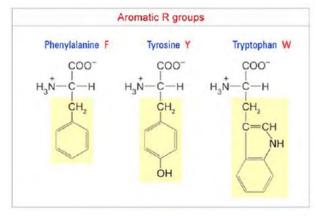
Figure by MIT OCW.

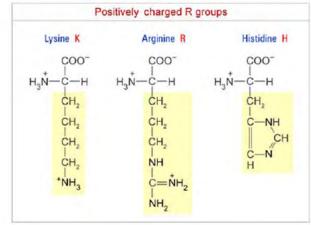
[after A. L. Lehninger, D. L. Nelson and M. M. Cox. *Principles of Biochemistry*, pg. 171.]

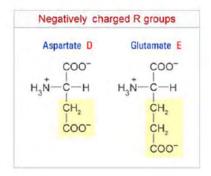
1. Primary Structure

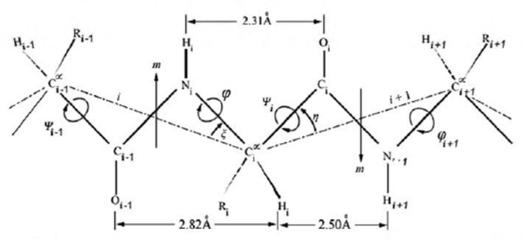
- H O
- > comprised of amino acid residues: N-CHR-C -
- ➤ peptide (amide) bond CONH is effectively rigid & planar (partial double-bond character)
- ➤ directional character to bonding: amino acids are L stereoisomers


Figure by MIT OCW.


[after A. L. Lehninger, D. L. Nelson and M. M. Cox, Principles of Biochemistry, pg. 115.]


 AA side groups have variable chemical character



[after A. L. Lehninger, D. L. Nelson and M. M. Cox. *Principles of Biochemistry*.]

2. Secondary Structure

Spatial configuration determined by the rotation angles ϕ_i & ψ_i about the single bonds of the α -carbons

[after P. J. Flory. Statistical Mechanics of Chain Molecules, pg. 251.] (ϕ_i, ψ_i) are independent of (ϕ_{i+1}, ψ_{i+1})

Figure by MIT OCW.

β-sheets

- backbone has extended "zigzag" structure
- stabilized by intermolecular H-bonding between –NH and C=O of adjacent chains

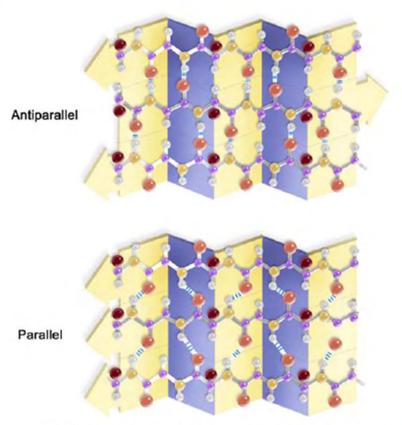
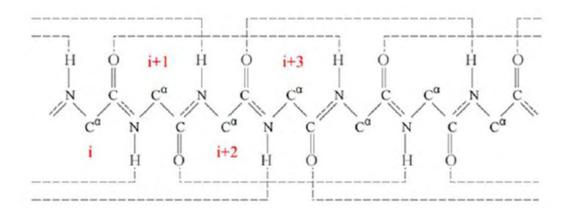


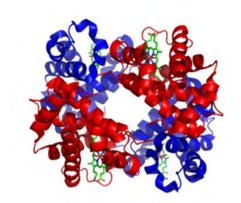
Figure by MIT OCW.

[after A. L. Lehninger, D. L. Nelson and M. M. Cox. *Principles of Biochemistry*, pg. 169.]

α-helices

 \succ stabilized by intramolecular H-bonding between C=O of residue i and -NH of residue i+3 (requires all L or D stereoisomers)

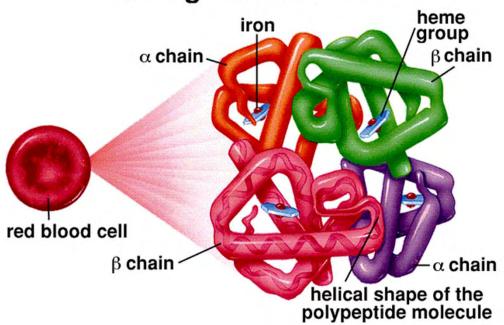



Figure by MIT OCW.

[after P. J. Flory. Statistical Mechanics of Chain Molecules, pg. 287]

- natural abundance
 - most common secondary structure in proteins
 - in fibrous proteins: α-keratins (hair, skin,...)
 - in globular proteins: avg. ~25% α−helix content

3. Tertiary & Quaternary Structure

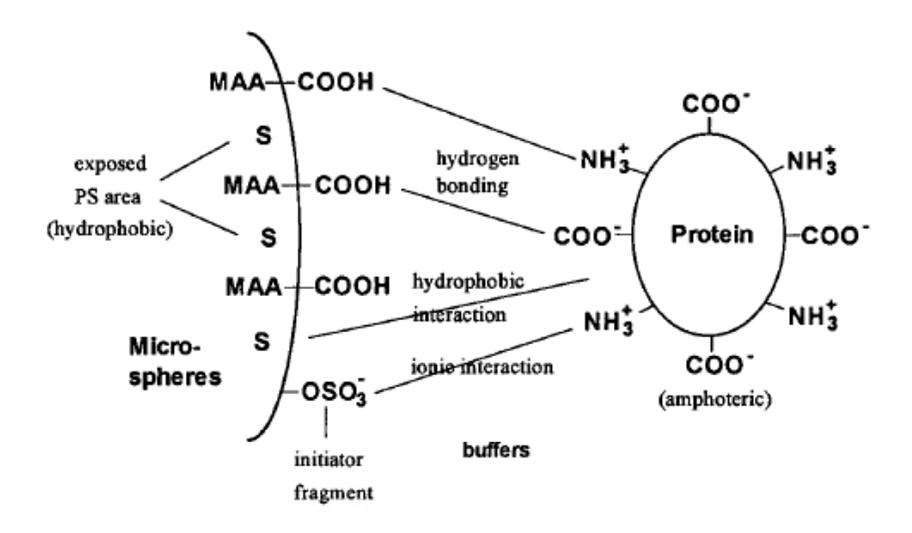

- > Tertiary: folded arrangements of secondary structure units
- Quaternary: arrangements of tertiary (polypeptide) units

Sylvia S. Mader, Inquiry into Life, 8th edition. Copyright © 1997 The McGraw-Hill Companies, Inc. All rights reserved.

Hemoglobin Molecule

Example: hemoglobin

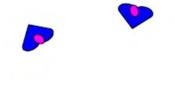
Synthetic Polymers vs. Proteins


Property	Synthetic Polymers	Polypeptides	
Molecular Wt.	1000-10 ⁶ g/mol	1000-10 ⁶ g/mol (typ. <2000 a.a.)	
Molecular Wt. Distribution	Always $> 1 (M_w/M_n)$	Always ≡1	
Sequence	i. 1-3 types of repeat units ii. many chemistries	i. many side groups ii. always amides	
Solution Structure	Random coils or self-avoiding random coils $R_g \sim N^{0.5} \; (\theta \; solvent) \\ R_g \sim N^{0.6} \; (good \; solvent)$	Globular –"condensed" chains (ρ ~1.36 g/cm ³) (hydrophobic R groups sheltered from H ₂ O) R_g ~ $N_{aa}^{0.33}$	
Available Conformations	$\Omega_{\text{ran}} \sim z^{N} \ (z = \# \text{ n.n.})$ $\Omega_{\text{SA}} \sim z^{N} \ N^{1/6} << \Omega_{\text{ran}}$	Ω ~1 (can ↑ if bound or adsorbed!)	
Secondary Interactions	van der Waals, H-bonds, electrostatic, "hydrophobic effect"	Same as synthetic, with "lock-and-key" topology	

Polypeptides can *transform* to "random coil" conformations, through:

- > changes in temperature
- > changes in soln. pH or composition (e.g., added salts, urea)
- adsorption to surfaces

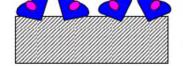
⇒ changes physiological function!


- In as short a time as can be measured after implantation in a living system (< 1 sec), proteins are already observed on biomaterial surfaces.
- Seconds to minutes: a monolayer of protein absorbs to most surfaces
- Protein adsorption occurs well before arrival of cells thus cells primarily interact with a protein layer, rather than actual biomaterial surface

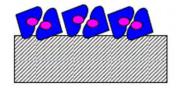
Overall schematic representation of the protein adsorption on carboxylated microspheres. Many types of interactions.

Background

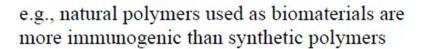
A) Protein activity varies in adsorbed vs. solvated state

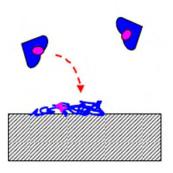


e.g., cell adhesion increases with adhesion peptide concentration


conc. dependent

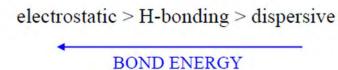
1. higher local concentration—function may be



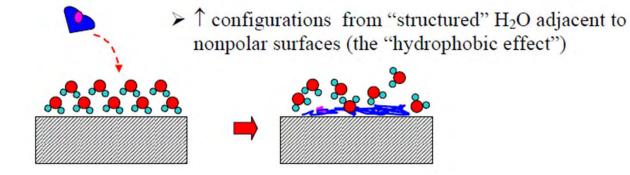


- change in reactivity—access to "active" a.a. sequence ↑ or ↓
- ⇒ enhanced or reduced binding capability
- e.g., fibrinogen: platelets adhere when adsorbed, not in soln.

- denaturation—conformation varies from soln. conformation
 - ⇒ different a.a. sequences exposed
 - *enhance or deactivate normal function
 - *elicit unintended function



Background

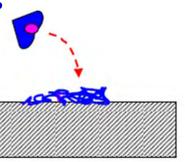

B. Entropic forces

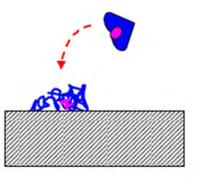
1. secondary bond formation

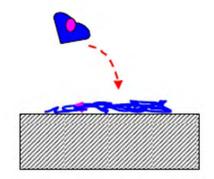
Depends on material's surface chemistry

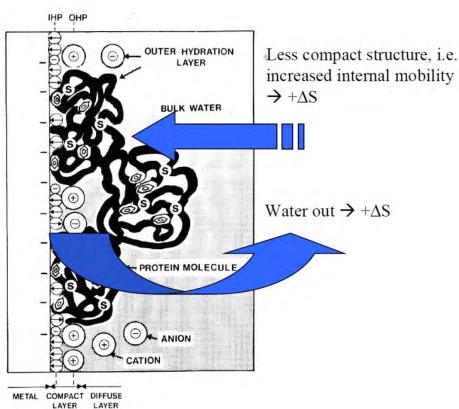
2. entropic forces

less translational entropy loss (ΔS_{mix}) for adsorbed proteins (macromolecules) vs. H₂O


$$\frac{\Delta S_{mix}}{k} = n_p \ln \phi_p + n_{H_2O} \ln \phi_{H_2O}$$

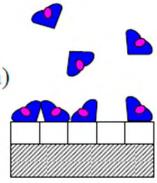

For a given ϕ_p , n_p decreases as protein MW $\uparrow \Rightarrow \downarrow \Delta S_{mix}$


Background


> \(\) configurations for denatured vs. solvated proteins

B. Entropic forces

Gain in entropy probably is the main driving force during spontaneous protein adsorption!!


Background

- C. Adsorbed proteins initiate physiological responses to biomaterials
 - c) Adsorbed proteins initiate physiological responses to biomaterials
 - coagulation mechanism
 - alternative pathway of complement system (vs. antigenantibody)
 - ➤ in vitro protein adsorption experiments → 1st test of "biocompatibility"

The simplest picture: *Langmuir model* for <u>reversible</u> adsorption

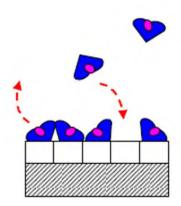
Makes analogy to chemical reaction kinetics:

- [P] = protein concentration in solution (e.g., #/vol)
- [S] = density of unoccupied surface sites (e.g., #/area)
- [PS] = density of surface sites occupied by protein

$$P + S \leftrightarrow PS$$

Assumes: 1 protein binds 1 surface "site" can involve multiple secondary bonds

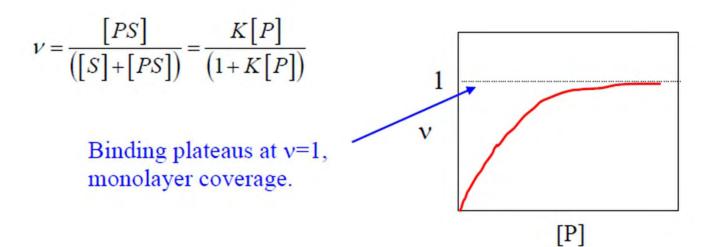
Assuming the "reaction" follows 1st order kinetics:

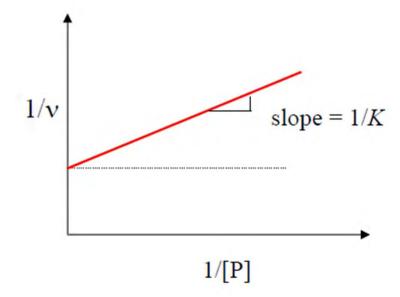

adsorption rate = $k_a[P][S]$ desorption rate = $k_d[PS]$

Assumes: dilute [P] (in plasma: 90% H₂O)

At equilibrium: adsorption rate = desorption rate

$$k_a[P][S] = k_d[PS]$$


Assumes: reversibility


Can define an "affinity" const,
$$K$$
 (or K_a): $K = k_a/k_d = \frac{[PS]}{[P][S]}$

(a.k.a. "binding" or "association" const; typical units = L/mol)

K obtained experimentally by measure of fraction occupied sites: v = # filled sites/total # surface sites

To obtain *K*:

 K_a is an indicator of the favorableness of adsorption. Note that K_a is the inverse of the dissociation constant, K_d , which has units of concentration, e.g., mol/L.

- For [P] $< K_d$, few occupied surface sites.
- For [P] = K_d , half of the surface sites will be occupied.

Models for Protein Adsorption: Scatchard Plot

A second approach used to extract K is known as a Scatchard plot.

Rearranging:
$$K[S] = \frac{[PS]}{[P]}$$

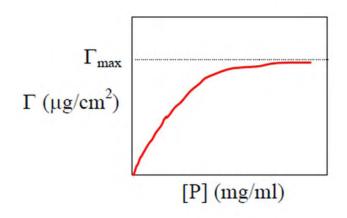
Defining the total number of surface sites: $[S]_0 = [S] + [PS]$,

And substituting for [S]:
$$K([S]_0 - [PS]) = \frac{[PS]}{[P]}$$

If the protein solution concentration is not significantly depleted upon adsorption, then $[P] \approx [P]_0$ (the initial protein concentration):

$$\frac{[PS]}{[P]_0} = -K[PS] + K[S]_0$$
Provides a measure of $[S]_0$

$$\frac{[PS]}{[P]_0}$$
intercept = $K[S]_0$


$$slope = -K$$

$$[PS]$$

Models for Protein Adsorption: Scatchard Plot

In adsorption experiments, the value usually measured is a surface concentration, e.g., ng/cm^2 or $\mu g/cm^2$ – often denoted as Γ or θ

Surface Sensitive
Measurements Necessary

- 1. Ellipsometry
- 2. Surface Plasmon Spectroscopy
- Quartz Crystal Microbalance

If we assume a monolayer coverage at Γ_{max} , we can calculate the effective area per protein molecule on the surface:

$$A_{eff} = \frac{M_{protein}}{N_{Av}\Gamma_{max}}$$
 Related to protein conformation on surface!

Note that $[S]_0$ (in #/area) is the inverse of the area per molecule:

$$A_{eff} = \frac{1}{[S]_0}$$

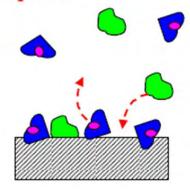
Summary: Protein Adsorption

Pro-adsorption factors

- Dehydration of the interface
- Increase of the protein interior mobility
- Columbic interactions
- Van der Wall interactions

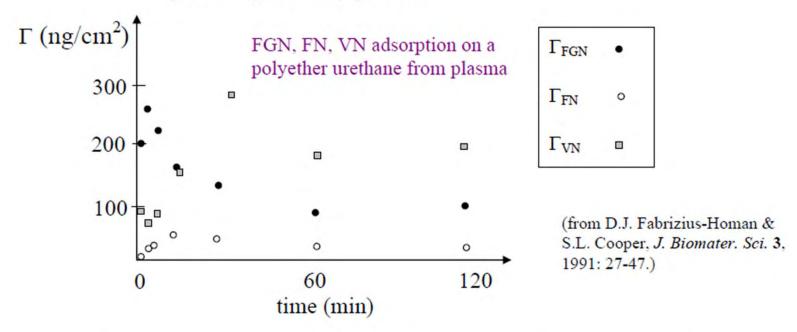
Anti-adsorption factors

- Strong water binding to interface
- Protein rigidity
- Surface mobility
- Low net charge

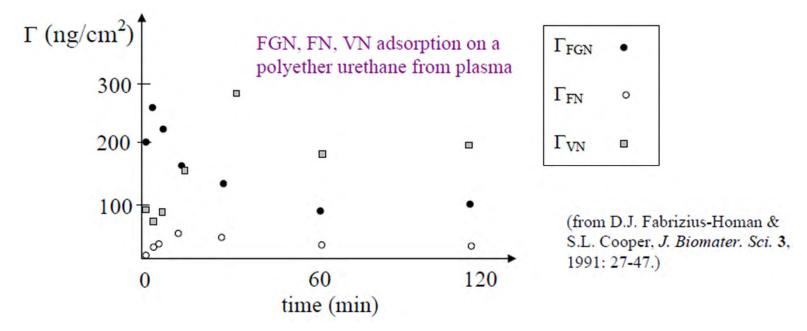

Surfaces: Interactions of Proteins with Surfaces: Part 2

Protein-Surface Interactions: Part 2

The Langmuir model is applicable to numerous <u>reversible</u> adsorption processes, but fails to capture many aspects of protein adsorption.


1. Competitive Adsorption

- many different globular proteins in vivo
- ➤ surface distribution depends on [P_i]'s & time

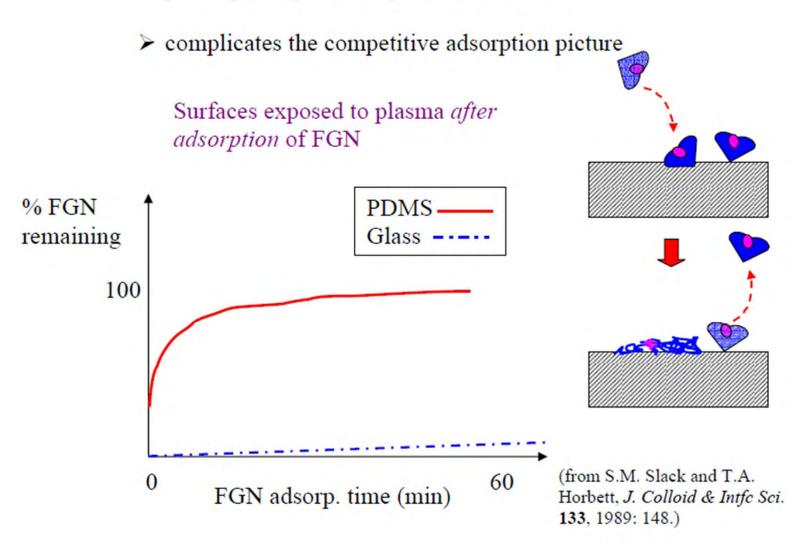

Vroman Effect

The Vroman effect: Displacement (over time) of initially adsorbed protein by a second protein.

Protein	Plasma conc. (mg/ml)	MW (Daltons)
Human serum albumin	42	68,500
Immunoglobulins	28	145,000 (IgG)
Fibrinogen	3.0	340,000
Fibronectin	0.3	240,000
Vitronectin	0.2	60,000

Plasma – fluid component of blood with anticoagulant added Serum – fluid component of blood with coagulants removed

Observations


At t~0: uniform [P_i]'s everywhere ⇒ protein with highest concentration dominates initial adsorption

At t>0: local depletion of adsorbed species near surface—exchange with faster diffusing species ensues

At t>>0: gradual exchange with higher affinity species

2. Irreversible Adsorption

occurs in vivo & in vitro: proteins often do not desorb after prolonged exposure to protein solutions

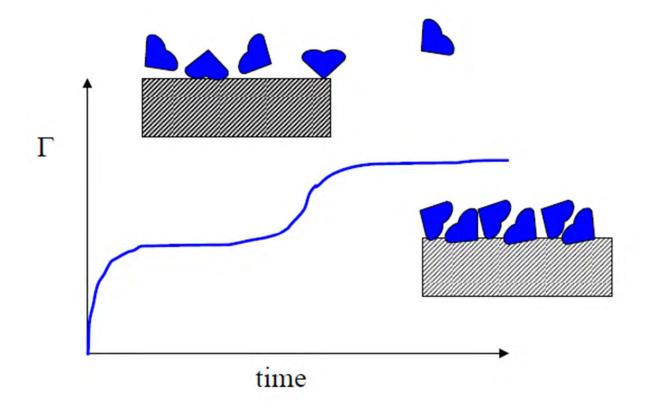
Irreversible Adsorption

Physiological implications:

- a) hydrophobic surfaces cause more denaturing
- b) denatured proteins may ultimately desorb (by replacement) ⇒ non-native solution behavior

Models that attempt to account for 1 & 2:

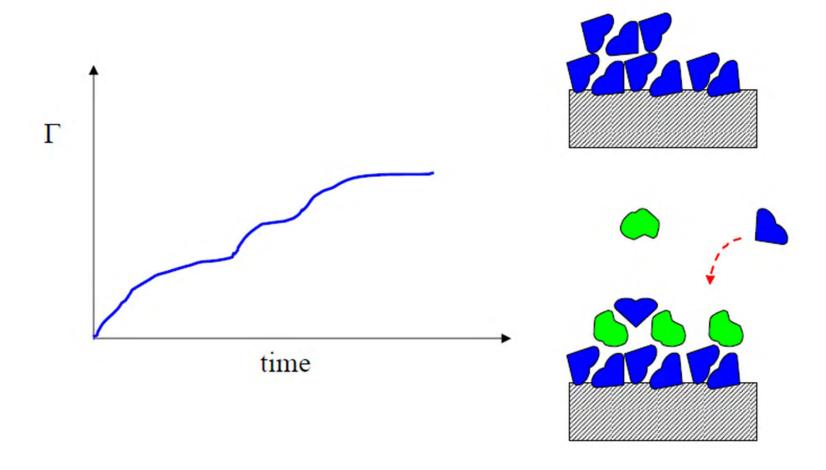
S.M. Slack and T.A. Horbett, *J. Colloid & Intfc Sci.* 133, 1989 p. 148


I. Lundstroem and H. Elwing, *J. Colloid & Intfc Sci.* 136, 1990 p. 68

C.F. Lu, A. Nadarajah, and K.K. Chittur, *J. Coll. & Intfc Sci.* 168, 1994 p. 152

Restructuring

3. Restructuring


➤ Protein layers reaching monolayer saturation can reorganize (e.g., crystallize) on surface, creating a stepped isotherm

Multilayer Formation

4. Multilayer Formation

Proteins can adsorb atop protein monolayers or sublayers, creating complicated adsorption profiles

1) Techniques for quantifying adsorbed amounts

a) Labeling Methods: tag protein for quantification, use known standards for calibration

i) Radioisotopic labeling

proteins labeled with radioactive isotopes that react with specific a.a. residues

e.g., tyrosine labeling with 125I; 131I; 32P

-
$$CH_2$$
 \longrightarrow OH \longrightarrow - CH_2 \longrightarrow OH \longrightarrow OH

- > Small % radioactive proteins added to unlabelled protein
- γ counts measured and calibrated to give cpm/µg

Advantage: high signal-to-noise ⇒ measure small amts (ng)

Disads: dangerous γ emissions, waste disposal, requires protein isolation

ii) Fluorescent labels

measure fluorescence from optical excitation of tag

e.g., fluorescein isothiocyanate (FITC)

to amines

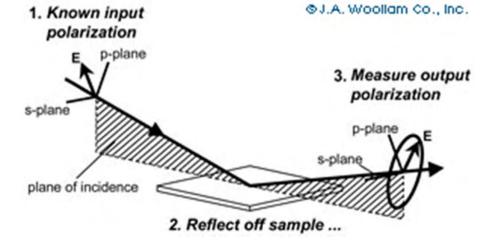
Advantage: safe chemistry

Disads: tag may interfere with adsorption, requires protein isolation, low signal

iii) Staining

molecular label is adsorbed to proteins post facto

e.g., organic dyes; antibodies (e.g, FITC-labeled)


Advantages: safe chemistry, no protein isolation/modification

Disads: nonspecific adsorption of staining agents (high noise)

- b) Other Quantification Methods
 - i) HPLC on supernatants (w/ UV detection)
 - ii) XPS signal intensity, e.g., N1s (relative to controls)
 - iii) Ellipsometry—adsorbed layer thickness (dry)

2) Techniques for quantifying adsorbed amounts

• In-Situ Ellipsometry

- · polarized light reflected from a surface
- phase & amplitude changes to parallel (p) and perpendicular (s) E-field components


 E_i , $E_r = incident/reflected E-field$

reflection coefficients:
$$r_p = \frac{E_{rp}}{E_{ip}} = |r_p| \cdot e^{i\delta_p}$$
 and $r_s = \frac{E_{rs}}{E_{is}} = |r_s| \cdot e^{i\delta_s}$

ratio of amplitudes: $\tan \Psi = \frac{|r_p|}{|r_s|}$ phase difference: $\Delta = \delta_p - \delta_s$

Ellipsometry

> Experimental set-up

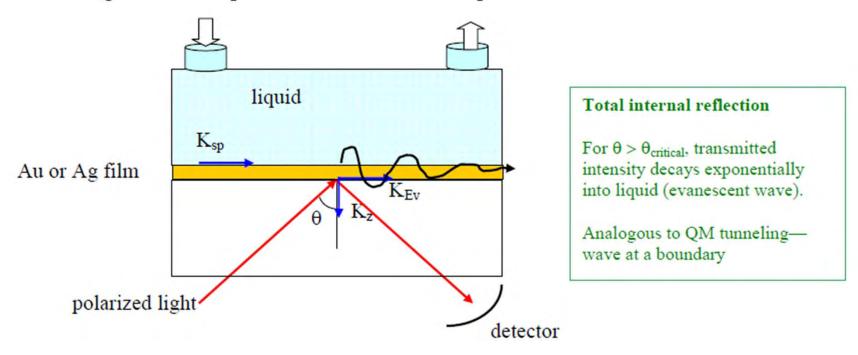
Adsorbed protein layer changes the refractive index adjacent to the substrate.

Ellipsometric angles Ψ and Δ can be converted to adsorbed layer thickness (d_f) & refractive index (n_f) assuming 3-layer model & Fresnel optics

Ellipsometry

ightharpoonup adsorbed amount: $\Gamma = d_f \frac{n_f - n_l}{dn/dc}$ R.I. increment of protein solution vs. protein conc. (~0.2 ml/g)

Advantages: no protein isolation; fast; easy; in situ; sensitive


Disads: quantitation requires a model, optically flat & reflective substrates required; can't distinguish different proteins

References:

P. Tengvall, I. Lundstrom, B. Liedburg, *Biomaterials* 19, 1998: 407-422.
H.G. Tompkins, A User's Guide to Ellipsometry, Academic Press: San Diego, 1993.

b) Surface Plasmon Resonance

Experimental set-up: polarized light reflects at interface between glass with deposited metal film and liquid flow cell

Theoretical basis:

- light traveling through high n medium (glass) will reflect back into that medium at an interface with material of lower n (air/water)
- total internal reflection for $\theta > \theta_{critical}$

$$\theta_{critical} = \sin^{-1} \left(\frac{n_{low}}{n_{high}} \right)$$

- surface plasmons—charge density waves (free oscillating electrons) that propagate along interface between metal and dielectric (protein soln)
- coupling of evanescent wave to plasmons in metal film occurs for $\theta = \theta_{spr}$ (> $\theta_{critcal}$) corresponding to the condition:

$$K_{sp} = K_{Ev}$$

 c/ω_0 = incident light λ

 $\varepsilon_{\text{metal}} = \text{metal dielectric const.}$

 K_{sp} , K_{Ev} = wavevector of surface plasmon/evanescent field

$$K_{Ev} = n_{glass} \frac{\omega_0}{c} \sin \theta$$

$$K_{sp} = \frac{\omega_0}{c} \sqrt{\frac{\varepsilon_{metal} n_{surface}^2}{\varepsilon_{metal} + n_{surface}^2}}$$

- Energy transfer to metal film reduces reflected light intensity
- change of $n_{surface}$ due to adsorption of protein at interface will shift θ_{spr} where $K_{sp} = K_{Ev}$

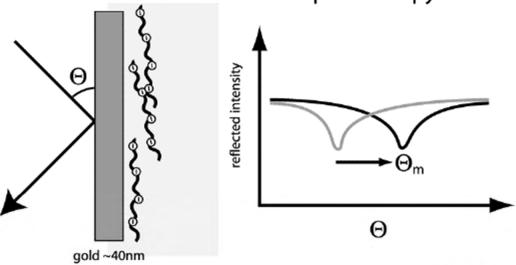
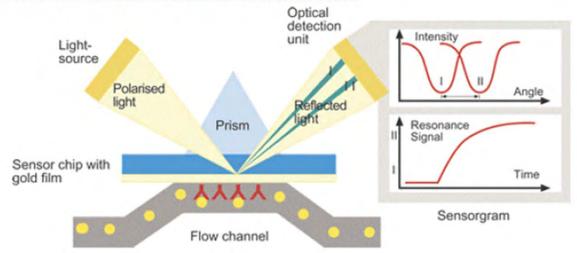
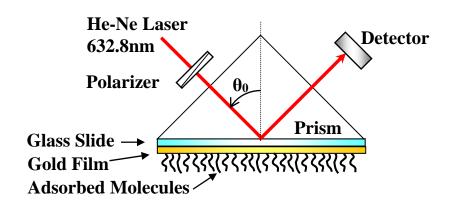
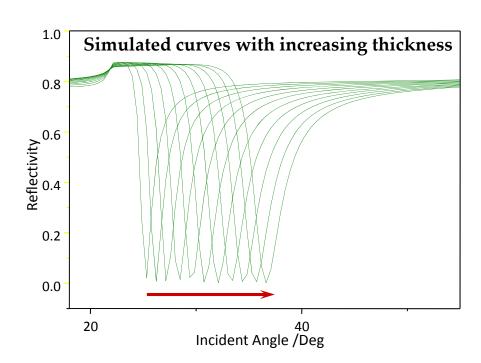
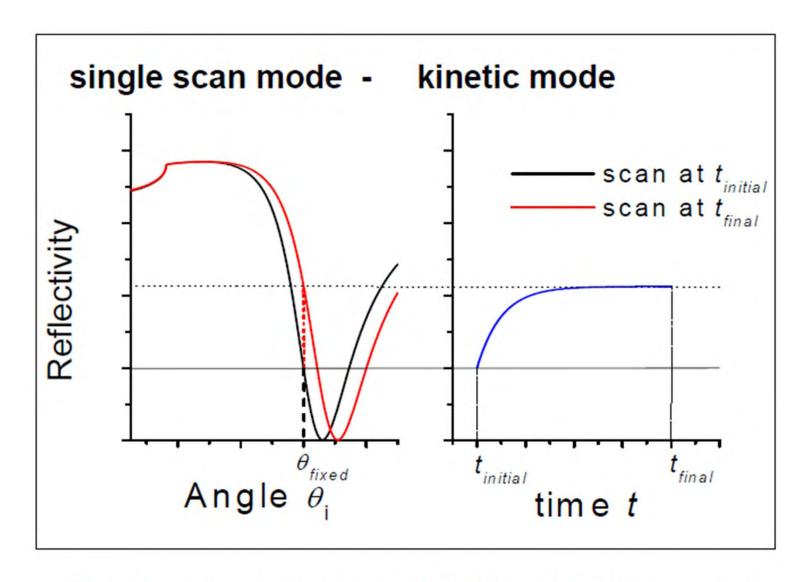
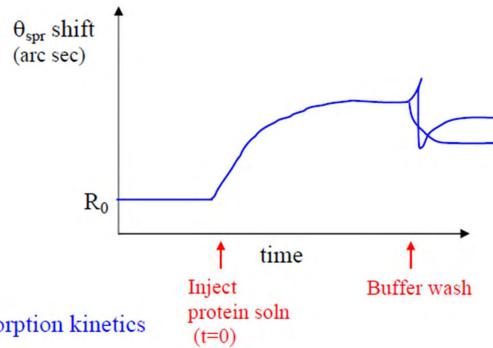




Figure by MIT OCW


Biacore Commercial SPR Instrument from Biacore website: www.biacore.com/lifesciences/index.html


Courtesy of Biacore. Used with permission.


- Evanescent wave optical technique sensitive to changes in thickness and optical properties of thin and ultrathin films –
 Angstrom sensitivity
- Non-destructive to samples
- Attenuated total reflection (ATR) setup in a Kretschmann configuration, optics are away from the sample and subphase
- Surface plasmon excitation observed in reflectivity-angular scan
- Relatively insensitive to environmental changes – temperature, viscosity, etc.

The reflectivity – time curve can then be used for kinetic analysis

Determining adsorption kinetics

Resonance shift fitted to:

$$R(t) = (R_{\infty} - R_0) [1 - \exp(-k_{obs}t)] + R_0 \rightarrow \text{obtain } k_{obs}$$

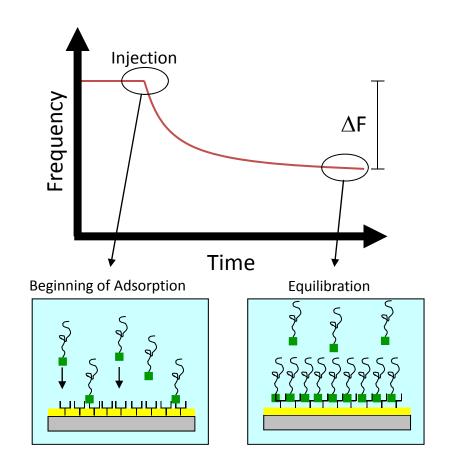
linear fit of:

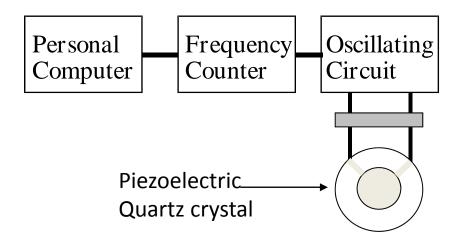
$$k_{obs} = k_d + k_a [P] \rightarrow \text{obtain } k_d, k_a$$

- more complex fitting expressions for R(t) often required
- k_d alternatively obtained from dissociation data: $R(t) = R_0 \exp(-k_d t)$

Advantages: no protein labeling, controlled kinetic studies, sensitive

Disads: requires "model" surface preparation—limited applicability


References:


R.J. Green, et al., Biomaterials 21, 2000: 1823-1835.

P.R. Edwards et al., J. Molec. Recog. 10, 1997: 128-134.

Quartz Crystal Microbalance (QCM)

How to measure binding constants?

Sauerbrey Equation

$$\Delta F = \Delta m \left(-2F_q^2 / A \sqrt{\rho_q \mu_q} \right)$$

Scatchard Equation

$$\Delta F/F_{o}c = K_{b}N - K_{b}\Delta F/F_{o}$$

QCM-D (Dissipation)

- Simultaneous monitoring of Δ frequency (Δ F) and Δ dissipation (Δ D) at multiple harmonics of the quartz resonator
- Dissipation reveals qualitative information about the viscoelastic properties of the adsorbed layer
- Dissipation of a viscoelastic polymer layer on a quartz resonator is heavily influence by its structure. Rigid films show small ∆D values while soft or flexible films show larger ∆D values
- Modeling the viscoelastic properties using a Voight model can yield quantitative information

Dissipation

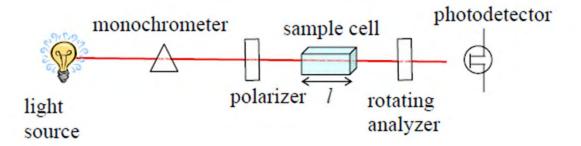
$$\Delta D = \frac{E_{dissipated}}{2\pi \cdot E_{stored}}$$

Larger E_{dissipated} yields more viscoelastic response

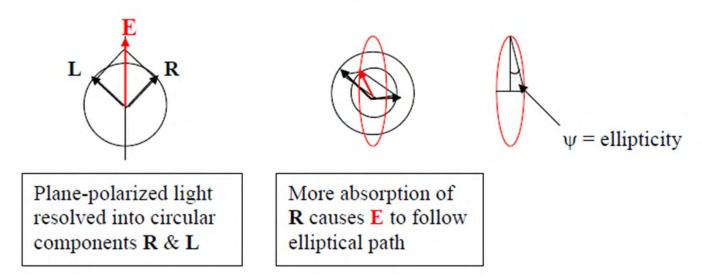
3. Extent of Denaturing

Ellipsometry

Variations in thickness (d_f) & refractive index (n_f) of adsorbed layer over time gives indication of denaturation (inconclusive)



Must use a technique sensitive to the structure of the protein


Circular Dichroism

Circular Dichroism

Experimental set-up: monochromatic, plane-polarized light is passed through a sample solution and detected

Theoretical basis: unequal absorption of R- and L-components of polarized light by chiral molecules (e.g., proteins!)

The ellipticity ψ is related to the difference in **L** and **R** absorption by:

$$\psi = \frac{2.303}{4} (A_L - A_R) \frac{180}{\pi} \text{ (degrees)}$$

where
$$A = -\log T = -\log \frac{I}{I_0} = \varepsilon c_p l$$
 (Beer's Law)

Molar ellipticity:
$$\left[\theta\right] = \frac{\psi \cdot M_p}{c_p l}$$

- Ellipticity can be + or -; depends on electronic transition $(\pi \pi * vs. n \pi *)$
- Proteins exhibit different values of [θ] for α helix, β sheet, and random coil conformations in the far UV.

Conformation	Wavelength (nm)	Transition
α helix	222 (-)	n-π* peptide
α helix	208 (-)	π - π * peptide
α helix	192 (+)	π - π * peptide
β sheet	216 (-)	n-π* peptide
β sheet	195 (+)	$\pi - \pi^*$ peptide
β sheet	175 (-)	$\pi - \pi^*$ peptide

Circular Dichroism

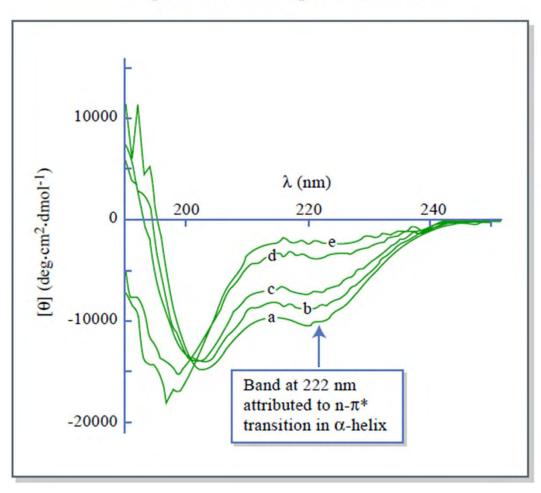



Figure by MIT OCW.

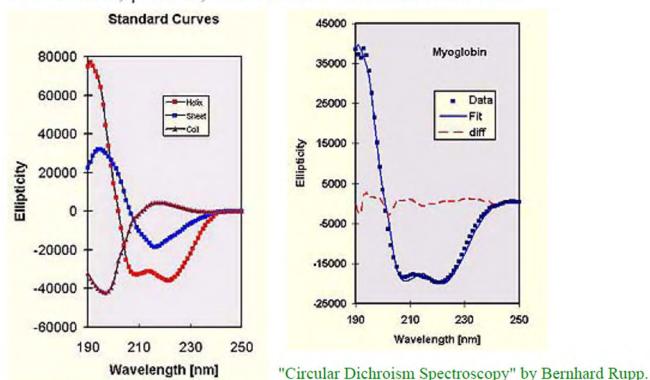
After T.E. Creighton, ed., *Proteins:*Structures and Molecular Principles,
W.H. Freeman & Co: NY; 1983, p. 181.

Changes to CD spectra give a measure of *denaturation*, e.g., due to adsorption at a surface

CD spectra for the synthetic peptide:
Ac-DDDDDAAAARRRRR-Am

(a) in pH 7 solution

(b-e) adsorbed to colloidal silica: b) pH 6.8; c) pH 7.9; d) pH 9.2; e) pH 11.3 A


Figure by MIT OCW.

[After S.L. Burkett and M.J. Read,
Langmuir 17, 5059 (2001).]

For quantitative comparisons, molar ellipticity per residue is computed, by dividing $[\theta]$ by the number of residues in the protein (n_r) .

$$\left[\theta\right]_{mrd} = \frac{\psi \cdot M_p}{10n_r c_p l} = \frac{\psi \cdot \overline{M_r}}{10c_p l}$$
 units: deg cm² dmol⁻¹

% of α helix, β sheet, and random coil conformations obtained by linear deconvolution using "standard curves" from homopolypeptides such as poly(L-lysine) in 100% α helix, β sheet, and random coil conformations.

http://web.archive.org/web/20050208092958/http://www-structure.llnl.gov/cd/cdtutorial.htm

For a rough estimate of α -helix content, the following expressions have been employed:

$$\alpha - helix\% = \frac{[\theta]_{208} - 4000}{33,000 - 4000}$$
 from $[\theta]_{mrd}$ data at 208 nm

$$\alpha - helix\% = \frac{[\theta]_{222}}{40,000} \quad \text{from } [\theta]_{mrd} \text{ data at } 222 \text{ nm}$$

Advantages: no labeling required; simple set-up

Disads: need experimental geometry with high surface area, e.g., colloidal particles (high signal)

References:

N. Berova, K. Nakanishi and R.W. Woody, eds., Circular Dichroism: Principles and Applications, 2nd ed., Wiley-VCH: NY; 2000.

N. Greenfield and G.D. Fasman, Biochemistry 8 (1969) 4108-4116.