Lecture 1: Intro. to Biomaterials: Structural Hierarchy in Materials & Biology What are "biomaterials"? A good working definition from the text is: "A nonviable material used in a medical device, intended to interact with biological systems."* | MEDICAL DEVICE EXAMPLES | | ANNUAL # (U.S.)* | |--|-------------|------------------| | Sutures (temporary or bioresorbable) | | 250 M** | | Catheters (fluid transport tubes) 200 | | M | | Blood Bags 40 | | M | | Contact Lenses 30 | | M | | Intraocular Lenses 2.5 | | M | | Coronary Stents 1.2 | | M*** | | Knee and Hip Prostheses 0.5 | | M | | Breast Prostheses (cancer or cosmetic) | 0.25 | M | | Dental Implants 0.9 | | M | | Renal Dialyzers (patients) | 0.3 | M | | Oxygenators/CPB's (cardiopulmonary byp | ass system— | 0.3 M | | facilitates open heart surgery) | | | | Vascular Grafts 0.3 | | M | | Pacemakers (pulse generators) | | 0.4 M | Biomaterials are defined by their application, NOT chemical make-up #### Ex. Intraocular lenses position: poly(methyl methacrylate) PMMA, a.k.a. "acrylic" ## Properties: - High refractive index - Easily processed - Environmentally stable (relatively inert) - Good mechanical properties Used as auto taillight covers for the same reasons! ^{*}from Biomaterials Science: An Introduction to Materials in Medicine, 2nd ed., B.D. Ratner et al., eds., Elsevier, NY 2004 **from Biomaterials Science: An Introduction to Materials in Medicine, 1st ed., B.D. Ratner et al., eds., Elsevier, NY 1996 ^{***}from Introduction to Biomedical Engineering, 2nd ed., J. Enderle et al., eds., Elsevier, NY 2005 ## Biomaterials cover all classes of materials – metals, ceramics, polymers Ocular lenses: acrylates, silicone Cranial: 316L SS, Ti, acrylic, HA, TCP Ear: HA, Al₂O₃, Ti, silicone Maxillofacial reconstruction: Al₂O₃, HA, Dental: acrylic, gold, 316L SS, Co-Cr-Mo, TCP, HA/PLA, Bioglass, Ti, Ti-Al-V Ti, Ti-Al-V, Al₂O₃, HA, Bioglass Heart: Co-Cr-Mo, Ti-Al-V, pyrolytic C, ePTFE, PET, PUR Degradable Sutures: copolymers of Pacemaker: 316L SS, Pt, PUR, PLA, PGA, PCL, PTMC, PDO silicone, PET Spinal: Co-Cr-Mo, Ti, HA, UHMWPE Load-bearing Orthopedic: Al₂O₃, Zirconia, 316L SS, Ti, Ti-Al-V, Co-Cr-Mo, UHMWPE Prosthetic joints: 316L SS, Co-Cr-Mo, Blood vessels: ePTFE, PET Ti, Ti-Al-V, silicone, UHMWPE, acrylic Tendon & Ligments: PLA/C PLA = polylactide fiber, ePTFE, PET, UHMWPE PGA= polyglycolide PTMC=polytrimethylenecarbonate PDO=poly(p-dioxanone) Bone Fixation: 316L SS, Co-Cr-Mo, PUR = polyurethane Ti, Ti-Al-V, PLA/HA., PLA, PGA ePTFE = expanded polytetrafluoroethylene UHMWPE = ultrahigh mol. wt. polyethylene PET=polyethylene terephthalate HA = hydroxyapatiteSS = stainless steel ## What governs materials choice? #### Historically \Rightarrow Today - 1. Bulk properties: matched to those of natural organs - Mechanical (ex., modulus) - Chemical (ex., degradation) - Optical (ex., whiteness, clarity) - 2. Ability to Process - 3. Federal Regulations: Medical Device Amendment of '76 (all new biomaterials must undergo premarket approval for safety and efficacy) Today \Rightarrow Future Rational design of biomaterials based on better understanding of natural materials and the material/biological organism interface Adoption of the Materials Engineering Paradigm What is "structure"? the arrangement of matter Both synthetic materials & biological systems have <u>many length</u> <u>scales</u> of structural importance. #### Structural Hierarchies ## Synthetic Materials ## **Living Organisms** Chemical Primary Structure 10⁻¹⁰m Molecules (H₂O, peptides, salts...) Higher Order Structure The realm of biomaterials engineering Organelles (lysosomes, nucleus, mitochondria) Microstructure Ce ↓ 10⁻³m Tissues Composites **Parts** Organs Devices Individual S ## Biomaterials Engineering spans ~8 orders of magnitude in structure! Fibroblast cells aligned on micropatterned surface Engineered length scale: 10⁻³ to 10⁻⁶ m Cell adheres to RGD peptide clusters linked to comb copolymer chain ends Engineered length scale: 10⁻⁷ to 10⁻⁸ m Cell adhesion receptors embedded in membrane interact with RGD sequence Engineered length scale: 10⁻⁹ to 10⁻¹⁰ m ## **LENGTH SCALES OF STRUCTURE** ## 1. Primary Chemical Structure (Atomic & Molecular: 0.1–1 nm) Length scale of **bonding** – strongly dictates biomaterial performance #### **Primary** - Ionic: e donor, e acceptor ceramics, glasses (inorganic) - Covalent: e sharing glasses, polymers - Metallic: e⁻ "gas" around lattice of + nuclei #### Secondary/Intermolecular - Electrostatic - H-bonding - Van der Waals (dipole-dipole, dipole-induced dipole, London dispersion) - Hydrophobic Interactions (entropy-driven clustering of nonpolar gps in H₂O) - Physical Entanglement (high MW polymers) Ex. 1: alumina Al₂O₃ (corundum) used for hard tissue replacement – e.g., dental implants #### Properties: - corrosion resistant - high strength - wear resistant - "biocompatible" derived from ionic bonding Electrostatic interactions w/ charges on proteins \Rightarrow non-denatured adsorbed protein layer \Rightarrow "camouflage" from Bicon, Inc. website: www.bicon.com Integrated Abutment Crown™ on soft-tissue model. Integrated Abutment Crown™. Insertion of Integrated Abutment Crown™ into implant well. Courtesy of BICON, LLC. (http://www.bicon.com). Used with permission. ## **Take Home Message:** "Biocompatibility" is strongly determined by primary chemical structure! Biocompatibility: "ability of a material to perform with an <u>appropriate</u> host response" ## **2. Higher Order Structure** (1 – 100 nm) **Crystals:** 3D periodic arrays of atoms or molecules metals, ceramics, polymers (semicrystalline) crystallinity decreases solubility and bioerosion (biogradable polymers & bioresorbable ceramics) **Networks:** exhibit short range order & characteristic lengths inorganic glasses, gels Ex. 1: Bioactive Glasses used for hard connective tissue replacement Network formers (~50wt%): SiO₂, P₂O₅ Network modifiers (high! ~50wt%): Na₂O, CaO ## Properties: • partially soluble *in vivo* (facilitates bone bonding) easily processed (complex shapes) derived from loose ionic network Ex. 2: Hydrogels used for contact lenses, drug delivery matrices, synthetic tissues x-linked, swollen polymer network crosslink density $\sim 1/\xi^3$ #### Properties: - shape-retaining - flexible - slow release of entrapped molecules derived from crosslinked network **Self-Assemblies:** aggregates of amphiphilic molecules *micelles, lyotropic liquid crystals, block copolymers* Ex.: Cationic Liposomes used for gene therapy ## Properties: - water dispersible - can contain/release DNA - can penetrate cell membrane (-) derived from supramolecular assembly ## 3. Microstructure $(1\mu m +)$ Crystal "grains": crystallites of varying orientation Ex: Stainless steels Fe-Ni-Cr Depletes at grain boundaries causing corrosion used for fracture fixation plates, etc., & angioplasty stents **Spherulites:** radially oriented crystallites interspersed w/ amorphous phase semicrystalline polymers, glass-ceramics **Precipitates:** secondary phases present as inclusions metals, ceramics, polymers Ex: Carbides in Co-Cr alloys ## Properties: Hardness • Corrosion resistance (form at grain boundaries) derived from precipitates **Porosity:** often desirable in biomaterials applications ## Ex. 1: Porous Bioresorbable Scaffolds polylactide (PLA) used for tissue regeneration ## Properties: - Penetrable to body fluids, cells - Structurally stable derived from pore microstructure Pore dimensions: 10-100 µm ## Ex. 2: Porous Metal Coatings Ti or Co-Cr-Mo used on hard tissue replacemt implants ## Properties: - Enhanced cell adhesion - Tissue ingrowth derived from pore microstructure Pore dimensions: 10-100 µm ## **Take Home Message:** Higher order structure & microstructure strongly dictate kinetic processes & mechanical response.