Lecture 3: Biomaterials Surfaces: Chemistry

Surfaces are high-energy regions of materials and thereby facilitate chemical reactions that influence performance of biomaterials.

This lecture will focus on 2 classes of surface chemistry relevant to biomaterials:

- Chemisorption on metals and oxides
- Aqueous corrosion of metals

1. Chemisorption

Strong modifications to electronic structure/ electron density of adsorbate molecule (> 0.5 eV/surface site)

Important Examples:

a) Metal Oxide Formation on Metals

"metals just wanna be oxides" $xM + \frac{1}{2}yO_2 \rightarrow M_xO_y$

 ΔG^0 of oxide formation is negative for all but a few metals (e.g., Au)

Reaction	ΔG^0 (joules)	T range (K)
$2Cr + 3/2 O_2 = Cr_2O_3$	-1,120,300 + 260T	298-2100
$Fe + \frac{1}{2}O_2 = FeO$	-259,600 + 62.55T	298-1642
$2Fe + 3/2 O_2 = Fe_2O_3$	-810,520 + 254.0T	298-1460
$Ti + O_2 = TiO_2$	-910,000 + 173T	298-2080

from D.R. Gaskell, Intro. To Metallurgical Thermodynamics, McGraw-Hill, 1981

How does metal oxidation happen?

One scenario is...

step 1: physisorption of O₂; ~20-25 kJ/mol

1 eV/molec = 96.5 kJ/mol $kT_{293} \approx 0.025 \text{ eV}$

step 2: molecular oxygen dissociates and reduces by chemisorption; ~600 kJ/mol

step 3: bond rearrangement; crystallization of oxide layer

Resultant reduction in surface energy

Compare: at 1400°C: $\gamma_{\delta-Fe} = 1900 \text{ dyn/cm}$ $\gamma_{FeO} = 580 \text{ dyn/cm}$

Consider metal oxidation as 2 half reactions:

F= 96,480 C/mol e⁻ 1 J = 1 V-C

WHAT HAPPENS AS THE OXIDE CONTINUES TO GROW?

The E-field decreases. Subsequent oxide growth occurs by thermal diffusion of M^{z+} to oxide surface or O^{2-} to metal/oxide interface under the concentration gradient Δc :

ii) adherent oxide

Oxide layer must not scale or spall

 \Rightarrow minimize ΔV_{molar} & stress build-up

 $xM + \frac{1}{2}yO_2 \rightarrow M_xO_y$

ex., Ti (TiO₂), Cr (Cr₂O₃), Al (Al₂O₃)

(Al metal not used in biomaterials applications due to toxicity)

Pilling-Bedworth ratio: $PB = \frac{V_{oxide(formed)}}{V_{metal(consumed)}} = \frac{\rho_M M_{M_x O_y}}{x M_M \rho_{M_x O_y}}$

Want PB ~ 1 (PB > 1) for adherance of oxide to underlying metal—in practice, this rule is marginally predictive, however.

Other Metal Oxidation Rxns by Chemisorption:

Reaction with water: $xM + yH_2O \rightarrow M_xO_y + yH_2$

*Reaction with CO*₂: $xM + yCO_2 \rightarrow M_xO_y + yCO$

IS THE FORMED METAL OXIDE SURFACE STABLE?

b) Acid/Base (Acceptor/Donor) Rxns on Oxides

i) ** $H_2O_{adsorbed} + O^2_{lattice} \rightarrow OH_{lattice} + OH_{surface}$

ii) $CO_{2,adsorbed} + O^{2-}_{lattice} \rightarrow CO_3^{2-}$ (carbonate formation)

Experimentally seen, e.g., on TiO_2 (110)

iii) w/ Hydrocarbons:

Alcohols (similar to HOH): $ROH_{adsorbed} + O^{2-}_{lattice} \rightarrow RO^{-} + OH^{-}$ Carboxylic Acids: $RCOOH_{adsorbed} + O_{2-lattice}^{-} \rightarrow RCOO^{-} + OH^{-}$

c) Redox (Oxidation/Reduction) Reactions on Oxides

Example

Alcohol dehydrogenation to aldehyde:

$$RCH_2OH + 2O^{2-} \rightarrow RCH + 2OH^{-} + 2e^{-}$$

alcohol is oxidized

electrons reduce M^{z+} at surface

reference: V.E. Henrich and P.A. Cox, *The Surface Science of Metal Oxides*, Cambridge Univ. Press: 1994

2. Aqueous Corrosion of Metals

In water or *in vivo*, even a "passive" oxide layer (terminated by bound water) becomes susceptible to corrosion.

Why?

- M^{z+} diffusion will always occur
- oxide may dissolve
- damage to oxide layer

Corrosion: the destructive result of chemical rxn between a metal or metal alloy and its environment.

Aqueous corrosion: involves electronic charge transfer i.e., an electrochemical rxn

Typically, metal surface acts as both *anode* (oxidation=loss of e⁻) & *cathode* (reduction=consumption of e⁻) in different regions

anodic rxn: $M \rightarrow M^{z_+} + ze^-$

cathodic rxns: O₂ (dissolved) + 4H⁺ + 4e⁻ \rightarrow 2H₂O 2H⁺ + 2e⁻ \rightarrow H₂ (g) in acidic

$$O_{2} \text{ (dissolved)} + 2H_{2}O + 4e^{-} \rightarrow 4OH^{-}$$

$$2H_{2}O + 2e^{-} \rightarrow H_{2} \text{ (g)} + 2OH^{-}$$

in neutral or basic

Locally, a biological environment can be neutral, acidic or basic.

Metals in aqueous solution

Metal ions leave surface; surface becomes negatively charged.

M^{z+} are attracted back toward surface, establishing a dynamic equilibrium.

The resulting *charged double layer* exhibits a characteristic E.

Values of E measured *relative* to a reference electrode (e.g., std. H_2 electrode = SHE), give metric of reactivity in aqueous soln.

emp series (Table 5, p. 432 of text)	Metal	Potential (V)
	Au	1.43
	Pt	1.2
	Ag	0.79
Standard electrode	Н	0.0
potentials E ⁰ measured	Sn	-0.14
at unit activity (~1 N) anodic of M^{z+} ions in solu	Мо	-0.20
with SHE ref.	Со	-0.28
	Fe	-0.44
+	Cr	-0.73
	Al	-1.33
	Ti	-1.63

If the activity of M^{z+} is less than unity, the electrical potential across the metal/solution interface is modified according to the Nernst equation:

Li

-3.05

$$E = E^{0} + \frac{RT}{zF} \ln \frac{a_{oxidized species}}{a_{reduced species}}$$

Equating activity to concentration:

$$a_{oxidized species} = [M^{z+}]$$
 $a_{reduced species} = [M] = 1$

$$E(V) = E^0 + \frac{0.059}{z} \log[M^{z+}]$$

At this potential, the system is in dynamic equilibrium, i.e., equal metal dissolution and deposition rates (the *exchange current density*).

J20J

A Simple Corrosion Rule: anything that upsets the dynamic equilibrium of the charged double layer can accelerate corrosion.

Galvanic Corrosion: if 2 metals in contact where $-E_A > -E_B$ (i.e., A more neg./anodic), B becomes an e⁻ "sink" \Rightarrow accelerating corrosion of A

The \downarrow in e⁻ from A surface allows \uparrow release of A^{z+}

Can be <u>macroscopic</u> scale or <u>microscopic</u> scale effect!

Examples:

- Plate & screw of different alloys
- Cr-depleted region at grain boundary (due to carbide formation)
- Formation of surface oxides or sulfides that conduct e⁻
- Alloys exhibiting 2 phases
- Metal grains of different orientation

Fretting Corrosion: accelerated corrosion from two surfaces rubbing together

- metal/metal, metal/bone, metal/oxide contacts
- wear of passive oxide film
 - localized stress $\Rightarrow \uparrow M^{z_+}$ dissolution
 - defects (terraces, steps): less bonds $\Rightarrow \uparrow M^{z_+}$ dissolution
- \blacktriangleright repetitive movement \Rightarrow continual loss of corrosion products

Pitting and Crevice Corrosion: localized attacks resulting in rapid M^{z+} release at discrete sites

- initiated at local failure of passive film
 pitting: surface defect; *crevice*: region of restricted transport
- ➤ remaining surface acts as cathode
 - \rightarrow rapid penetration at defect (oxidation = reduction)
- catalyzed by presence of Cl⁻
- \blacktriangleright autocatalyzed by \uparrow acidity from rxn in confined volume

Photo removed for copyright reasons.

Corrosion on neck region of a femoral stem of a CoCr hip prosthesis. from J.J. Jacobs et al, "Corrosion of Metal Orthopaedic Implants", *J. Bone and Joint Surgery* **80-A**, 268 (1998).

Ex. Stainless steels in Aqueous Soln:

For Cr contents below 12.5 at%: FeOOH resides at surface in hydrated form: $FeO_x(OH)_v \bullet nH_2O$ (iron oxyhydroxide hydrate)

In absence of Cl⁻, slow dissolution:

 $FeOOH + H_2O \rightarrow Fe^{3+} + 3OH^{-}$

With Cl⁻ present: FeOOH + Cl⁻ \rightarrow FeOCl + OH⁻ FeOCl + 2H₂O \rightarrow Fe³⁺ + Cl⁻ + 2OH⁻

Low solubility Fe^{3+} precipitates as $Fe(OH)_3$ (rust)

Breakdown of passivation layer until reaching metal:

Steel composition effects:

- Cr: For Cr > 12.5 at%: surface is hydrated CrOOH (chromium oxyhydroxide), i.e., $CrO_x(OH)_{3-2x} \bullet nH_2O$
 - renders S.S. surface passive
 - increases susceptibility to pitting/crevice corrosion (CrCl₃ solutions have low/negative pH!)

Mo: \downarrow dissolution rate in pits/crevices (mechanism?)

In the corrosion of metallic implants, further considerations arise with the complexity of biological fluids.

In vivo environment

- ≻ pH 7.4
- \succ T = 37°C
- ➤ anions: Cl⁻, PO₃⁻, HCO₃⁻ (bicarbonate)
- \succ cations: Na⁺, K⁺, Ca²⁺, Mg²⁺
- proteins & other biomolecules

Influence of other ions found in vivo:

 Ca^{2+} and Mg^{2+} : decrease corrosion rate

form precipitates on metal surfaces

$$Ca^{2+} + HCO_3^- + OH^- \rightarrow CaCO_3 + H_2O$$

 $Mg^{2+} + 2OH^- \rightarrow Mg(OH)_2$ precipitates

> O_2 influx restricted → inhibits cathodic reduction

Biological Factors Influencing Corrosivity:

- O_2 levels ($\uparrow O_2 \Rightarrow \uparrow$ corrosion; anodic=cathodic)
- pH variations (inflammation/infection $\Rightarrow \downarrow$ pH)
- Cellular activity (e.g., phagocytic cells \Rightarrow local \uparrow in oxidant conc.)
- Protein- M^{z+} binding (M^{z+} carried away $\Rightarrow \uparrow M^{z+}$ dissolution) e.g., cytochrome oxidase, peroxidase, catalase bind Fe²⁺
- Protein adsorption (\downarrow O₂ access to surface)
- Bacterial oxidation of Fe^{2+} to Fe^{3+} (\uparrow anodic rxn/Fe^{2+} dissolution)

Corrosion's Influence on *in vivo* Performance:

- Immunological sensitization; e.g., Ni & Cr allergic response
- Wear debris initiates biological cascade (foreign body response, bone loss)
- Loss of implant structural integrity (mechanical failure)
- ≻ Metal ion toxicity: Al, Ni, Cr, V, Co, Ti; ↑ levels in blood/organs
- Carcinogenicity (tumors at implant sites, leukemia/lymphoma correlation with CoCr implants)