## Lecture 5: Protein-Surface Interactions

#### **Importance of Protein-Surface Interactions:**

- Modulate cell adhesion
- Trigger the biological cascade resulting in foreign body response
- Central to diagnostic assay/sensor device design & performance
- Initiate other bioadhesion: e.g., marine fouling, bacterial adhesion

### **Fundamentals on Proteins:**

- Largest organic component of cells (~18 wt% /H<sub>2</sub>O =70%); extracellular matrix, and plasma (7wt% /H<sub>2</sub>O=90%).
- Many thousands exist—each encoded from a gene in DNA.
- Involved in all work of cells: ex, adhesion, migration, secretion, differentiation, proliferation and apoptosis (death).
- May be soluble or insoluble in body fluids.

*Insoluble proteins*—structural & motility functions; can also mediate cell function (ex., via adhesion peptides)

*Soluble proteins*—strongly control cell function via binding, adsorption, etc.

• Occur in wide range of molecular weights.

"Peptides" (several amino acids): hormones, pharmacological reagents

e.g., *oxytocin:* stimulates uterine contractions (9 a.a.) *aspartame*: NutraSweet (2 a.a.)

"Polypeptides" (~10-100 amino acids): hormones, growth factors

e.g., *insulin:* 2 polypeptide chains (30 & 21 a.a.) *epidermal growth factor* (45 a.a.)

"Proteins" 100's-1000's of amino acids

e.g., *serum albumin* (550 a.a.) *apolipoprotein B:* cholesterol transport agent (4536 a.a.)

## **Protein Functions:**

• *Structural/scaffold*: components of the extracellular matrix (ECM) that physically supports cells

e.g., *collagen*—fibrillar, imparts strength; *elastin*—elasticity to ligaments; *adhesion proteins: fibronectin, laminin, vitronectin*—glycoproteins that mediate cell attachment (bonded to GAGs)

- *Enzymes*: catalyze rxns by lowering E<sub>a</sub> thru stabilized transition state, via release of binding energy
- e.g., urease-catalyzes hydrolysis of urea

- *Transport*: bind and deliver specific molecules to organs or across cell membrane
- e.g., *hemoglobin* carries bound O<sub>2</sub> to tissues; *serum albumin* transports fatty acids
  - *Motile:* provide mechanism for cell motion e.g., via (de)polymerization & contraction
- e.g., actin, myosin in muscle
  - *Defense*: proteins integral to the immune response and coagulation mechanism
- e.g., *immunoglobulins (antibodies)*—Y-shaped proteins that bind to antigens (foreign proteins) inducing aggregate formation

*fibrinogen & thrombin*—induce clots by platelet receptor binding

- *Regulatory:* cytokines—regulate cell activities
- e.g., hormones: insulin (regulates sugar metabolism); growth factors

## **Protein Structure**

## Proteins have multiple structural levels...



Figure by MIT OCW.

[after A. L. Lehninger, D. L. Nelson and M. M. Cox. *Principles of Biochemistry*, pg. 171.]

## 1. Primary Structure

> comprised of amino acid residues: - N-CHR-C -

peptide (amide) bond CONH is effectively rigid & planar (partial double-bond character)

Η

directional character to bonding: amino acids are L stereoisomers



Figure by MIT OCW.

[after A. L. Lehninger, D. L. Nelson and M. M. Cox, Principles of Biochemistry, pg. 115.]

### $\succ$ side groups R have variable character



Figure by MIT OCW.

[after A. L. Lehninger, D. L. Nelson and M. M. Cox. *Principles of Biochemistry*.]

#### 2. Secondary Structure

Spatial configuration determined by the rotation angles  $\phi_i \& \psi_i$  about the single bonds of the  $\alpha$ -carbons



[after P. J. Flory. *Statistical Mechanics of Chain Molecules*, pg. 251.]  $(\phi_i, \psi_i)$  are independent of  $(\phi_{i+1}, \psi_{i+1})$ 

Figure by MIT OCW.

Ramachandran plots: designate permitted ranges of  $\varphi \& \psi$  for a.a. residues

> [from A.L. Lehninger, D.L. Nelson & M.M. Cox, pg. 171.]

Image removed due to copyright considerations

#### **β**-sheets

- backbone has extended "zigzag" structure
- stabilized by intermolecular H-bonding between –NH and C=O of adjacent chains



Figure by MIT OCW.

[after A. L. Lehninger, D. L. Nelson and M. M. Cox. *Principles of Biochemistry*, pg. 169.]

## $\alpha$ -helices

Stabilized by intramolecular H-bonding between C=O of residue iand -NH of residue i+3 (requires all L or D stereoisomers)



Figure by MIT OCW.

[after P. J. Flory. *Statistical Mechanics of Chain Molecules*, pg. 287]

➢ natural abundance

- most common secondary structure in proteins
- in fibrous proteins: α–keratins (hair, skin,...)
- in globular proteins: avg. ~25%  $\alpha$ -helix content

#### 3. Tertiary & Quaternary Structure

- > Tertiary: folded arrangements of secondary structure units
- Quaternary: arrangements of tertiary (polypeptide) units

Example: hemoglobin

Image removed due to copyright considerations

[from A.L. Lehninger, D.L. Nelson & M.M. Cox, pg. 187.]

## **Synthetic Polymers vs. Proteins**

| Property      | Synthetic Polymers                                                              | Polypeptides                                              |
|---------------|---------------------------------------------------------------------------------|-----------------------------------------------------------|
| Molecular Wt. | $1000-10^{6} \text{ g/mol}$                                                     | $1000-10^{6}  \text{g/mol}$                               |
|               |                                                                                 | ( typ. <2000 a.a.)                                        |
| Molecular Wt. | Always > 1 ( $M_w/M_n$ )                                                        | Always ≡1                                                 |
| Distribution  |                                                                                 |                                                           |
| Sequence      | i. 1-3 types of repeat units                                                    | i. many side groups                                       |
|               | ii. many chemistries                                                            | ii. always amides                                         |
| Solution      | Random coils or self-                                                           | Globular – "condensed"                                    |
| Structure     | avoiding random coils                                                           | chains ( $\rho$ ~1.36 g/cm <sup>3</sup> )                 |
|               | $R_{g} \sim N^{0.5}$ ( $\theta$ solvent)<br>$R_{g} \sim N^{0.6}$ (good solvent) | (hydrophobic R groups<br>sheltered from H <sub>2</sub> O) |
|               |                                                                                 | $R_{g} \sim N_{aa}^{0.33}$                                |
| Available     | $\Omega_{\rm ran} \sim z^{\rm N} \ (z = \# {\rm n.n.})$                         | $\Omega \sim 1$ (can $\uparrow$ if bound                  |
| Conformations | $\Omega_{\rm SA} \sim z^{,\rm N}  { m N}^{1/6} << \Omega_{\rm ran}$             | or adsorbed!)                                             |
| Secondary     | van der Waals, H-bonds,                                                         | Same as synthetic,                                        |
| Interactions  | electrostatic, "hydrophobic                                                     | with" <i>lock-and-key</i> "                               |
|               | effect"                                                                         | topology                                                  |
|               |                                                                                 |                                                           |

Polypeptides can *transform* to "random coil" conformations, through:

- ➤ changes in temperature
- changes in soln. pH or composition (e.g., added salts, urea)
- ➤ adsorption to surfaces

⇒ changes physiological function!

# **Protein Adsorption on Biomaterial Surfaces**

## Background

a) Protein activity varies in adsorbed vs. solvated state







1. higher local concentration— function may be conc. dependent

e.g., cell adhesion increases with adhesion peptide concentration

change in reactivity—access to "active" a.a. sequence ↑ or ↓

 $\Rightarrow$  enhanced or reduced binding capability

e.g., fibrinogen: platelets adhere when adsorbed, not in soln.

- 3. denaturation—conformation varies from soln. conformation
  - $\Rightarrow$  different a.a. sequences exposed

\*enhance or deactivate normal function \*elicit unintended function

e.g., natural polymers used as biomaterials are more immunogenic than synthetic polymers





b) Driving forces for protein adsorption

### 1. secondary bond formation

electrostatic > H-bonding > dispersive

**BOND ENERGY** 

## 2. entropic forces

Configurations from "structured" H<sub>2</sub>O adjacent to nonpolar surfaces (the "hydrophobic effect")

 less translational entropy loss (ΔS<sub>mix</sub>) for adsorbed proteins (macromolecules) vs. H<sub>2</sub>O

$$\frac{\Delta S_{mix}}{k} = n_p \ln \phi_p + n_{H_2O} \ln \phi_{H_2O}$$

For a given  $\phi_p$ ,  $n_p$  decreases as protein MW  $\uparrow \Rightarrow \downarrow \Delta S_{mix}$ 

## $\succ$ $\uparrow$ configurations for denatured vs. solvated proteins







Depends on material's surface chemistry

c) Adsorbed proteins initiate physiological responses to biomaterials

- ➤ coagulation mechanism
- alternative pathway of complement system (vs. antigenantibody)
- ➤ in vitro protein adsorption experiments → 1<sup>st</sup> test of "biocompatibility"

## Models for Protein Adsorption

The simplest picture: Langmuir model for reversible adsorption

Makes analogy to chemical reaction kinetics:

[P] = protein concentration in solution (e.g., #/vol)
[S] = density of unoccupied surface sites (e.g., #/area)
[PS] = density of surface sites occupied by protein



 $P + S \leftrightarrow PS$  Assumes: 1 protein binds 1 surface "site" can involve multiple secondary bonds

Assuming the "reaction" follows 1<sup>st</sup> order kinetics:

adsorption rate =  $k_a[P][S]$ desorption rate =  $k_d[PS]$ 

Assumes: dilute [P] (in plasma: 90% H<sub>2</sub>O)

At equilibrium: adsorption rate = desorption rate

$$\mathbf{k}_{\mathrm{a}}[\mathbf{P}][\mathbf{S}] = \mathbf{k}_{\mathrm{d}}[\mathbf{P}\mathbf{S}]$$





Can define an "affinity" const, K (or  $K_a$ ):  $K = k_a/k_d = \frac{[PS]}{[P][S]}$ 

(a.k.a. "binding" or "association" const; typical units = L/mol)

*K* obtained experimentally by measure of fraction occupied sites: v = # filled sites/total # surface sites



 $K_a$  is an indicator of the favorableness of adsorption. Note that  $K_a$  is the inverse of the dissociation constant,  $K_d$ , which has units of concentration, e.g., mol/L.

- For  $[P] < K_d$ , few occupied surface sites.
- For  $[P] = K_d$ , half of the surface sites will be occupied.

A second approach used to extract *K* is known as a Scatchard plot.

Rearranging:  $K[S] = \frac{[PS]}{[P]}$ 

Defining the total number of surface sites:  $[S]_0 = [S] + [PS]_1$ ,

And substituting for [S]: 
$$K([S]_0 - [PS]) = \frac{[PS]}{[P]}$$

If the protein solution concentration is not significantly depleted upon adsorption, then  $[P] \approx [P]_0$  (the initial protein concentration):



In adsorption experiments, the value usually measured is a surface concentration, e.g., ng/cm<sup>2</sup> or  $\mu$ g/cm<sup>2</sup> – often denoted as  $\Gamma$  or  $\theta$ 



If we assume a *monolayer* coverage at  $\Gamma_{max}$ , we can calculate the *effective area per protein molecule* on the surface:



Note that  $[S]_0$  (in #/area) is the inverse of the area per molecule:

$$A_{eff} = \frac{1}{[S]_0}$$